ELSEVIER

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Protonated MF_3 (M = N-Bi): Structure, stability, and thermochemistry of the $H-MF_3^+$ and $HF-MF_2^+$ isomers

Maria Giordani, Felice Grandinetti*

Dipartimento di Scienze Ambientali, Università della Tuscia, L.go dell' Università, 01100 Viterbo, Italy

ARTICLE INFO

Article history: Received 10 December 2008 Received in revised form 23 March 2009 Accepted 24 March 2009 Available online 2 April 2009

Keywords: Gas-phase protonation Group XV fluorides Structure and stability Theoretical calculations Thermochemistry

ABSTRACT

The structure, stability, and thermochemistry of the $H(MF_3)^+$ isomers (M=N-Bi) have been investigated by MP2 and coupled cluster calculations. All the $HF-MF_2^+$ revealed weakly bound ion–dipole complexes between MF_2^+ and HF. For M=N, As, Sb, and Bi they are more stable than the $H-MF_3^+$ covalent structures (free energy differences) by 6.3, 14.3, 32.1, and 73.5 kcal mol^{-1} , respectively. $H-PF_3^+$ is instead more stable than $HF-PF_2^+$ by 21.8 kcal mol^{-1} . The proton affinities (PAs) of MF_3 at the M atom range from 91.9 kcal mol^{-1} (M=Bi) to 156.5 kcal mol^{-1} (M=P), and follow the irregular periodic trend $BiF_3 < SbF_3 < AsF_3 < NF_3 < PF_3$. The PAs at the F atom range instead from 131.9 kcal mol^{-1} (M=P) to 164.9 kcal mol^{-1} (M=Bi), and increase in the more regular order $PF_3 \approx NF_3 < SbF_3 < BiF_3$. This trend parallels the fluoride-ion affinities of the MF_2^+ cations. For protonated NF_3 and PF_3 , the calculations are in good agreement with the available experimental results. As for protonated AsF3, they support the formation of $HF-AsF_2^+$ rather than the previously proposed $H-AsF_3^+$. The calculations indicate also that the still elusive $H(SbF_3)^+$ and $H(BiF_3)^+$ should be viable species in the gas phase, exothermically obtainable by various protonating agents.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The group XV fluorides MF₃ (M = N-Bi) are of both fundamental and applied interest. Most of these compounds are in fact extensively used in the electronic industry to perform etching and cleaning processes [1], to achieve the doping of semiconductors [2], and to deposit amorphous fluorinated materials [3]. All the MF₃ (M = N-Bi) have non-planar structures of C_{3v} symmetry and their bonding, properties, and reactivity have been extensively investigated, both experimentally and theoretically [4-8]. In this paper, we focus on the still only partially explored behaviour of MF3 as Brønsted bases. Protonated NF₃, not attainable under "magic acid" conditions [9], was observed so far under mass spectrometric conditions [10]. The proton affinity (PA) of NF₃, i.e. the minus enthalpy change of the reaction $H^+ + NF_3 \rightarrow H(NF_3)^+$, was subsequently measured by high-pressure mass spectrometry [11], and is currently compiled as 135.9 kcal mol⁻¹ [12]. Based on various experimental and theoretical studies [13-17], this value refers to the fluorine-protonated isomer HF-NF2⁺, a weakly bound ion-dipole complex between NF₂⁺ and HF structurally distinguishable from the less stable H-NF₃⁺ [14]. According to various ab initio calculations, the two isomers are separated by 2-6 kcal mol⁻¹ [13-17]. Proto-

nated PF₃ was observed so far in the gas phase [18] and the PA of PF₃, measured by different techniques [18,19], is currently compiled as 166.2 kcal mol⁻¹ [12]. The structure of the gaseous H(PF₃)⁺ has never been explored by experimental or theoretical methods, but the observed species has been invariably assigned as the trifluorophosphonium ion H-PF₃⁺. Consistently, this cation has been recently isolated in the solid salt H-PF₃+SbF₆- [20], and structurally characterized by spectroscopic methods and ab initio calculations. Protonated PF3 was also observed so far in solution under "magic acid" conditions and again assigned as H-PF₃⁺ by NMR spectroscopy [21]. Gaseous protonated AsF₃ was obtained so far under mass spectrometric conditions [22], and assumed to be the trifluoroarsonium H-AsF₃⁺. The measured PA of AsF₃, 152.2 kcal mol⁻¹ [12], resulted in between NF₃ and PF₃, and this reversed trend was explained in terms of the different electronegativity of M (M = N, P, As), and invoking a different participation of d orbitals in the formation of H-MF₃⁺. In the same study, it was also observed that H(AsF₃)⁺ reacts with ligands L such as CO, CO₂, CH₃F, and AsF₃ itself, so to give the displacement of HF and the formation of AsF_2^+ -(L). Interestingly, this behaviour closely resembles protonated NF₃, structurally assigned as HF-NF₂⁺, which undergoes ligand-displacement reactions [13,15] strictly analogue to H(AsF₃)⁺. Therefore, although mechanisms can be proposed which explain the occurrence of efficient ligand-displacements from H-AsF₃⁺ [22], a plausible alternative explanation is that at least the reactive form of the gaseous H(AsF₃)⁺ is indeed the fluorine-protonated structure

^{*} Corresponding author. Tel.: +39 0761 357126; fax: +39 0761 357179.

E-mail address: fgrandi@unitus.it (F. Grandinetti).

 $\mathsf{HF-AsF_2}^+$. To date, no theoretical calculations have been reported on the structure and stability of the $\mathsf{H}(\mathsf{AsF_3})^+$ isomers. Interestingly, with the only exception of $\mathsf{F_3As-Au^+SbF_6}^-$ [23], in its metal complexes $\mathsf{AsF_3}$ coordinates to the cation typically by its fluorine $\mathsf{atom}(s)$ [24]. Finally, neither experimental nor theoretical information is available on protonated $\mathsf{SbF_3}$ and $\mathsf{BiF_3}$. We therefore decided to undertake a theoretical investigation, at an uniform and accurate level of theory, on the structure, stability, and thermochemistry of the $\mathsf{H}(\mathsf{MF_3})^+$ isomers $(\mathsf{M}=\mathsf{N-Bi})$. The obtained results will be discussed in the present article.

2. Computational details

The calculations were performed with the Gaussian 03 [25] program using the Dunning's correlation consistent double- and triple-zeta basis sets augmented with diffuse functions for the H, N, F, and P atoms [26], and the Los Alamos ECP plus DZ basis set (LANL2DZ) [27] for the As, Sb, and Bi atoms. These basis sets will be denoted here as aug-cc-pVnZ and aug-cc-pVnZ/LANL2DZ, respectively (n = D, T). The geometries of MF₃ and of the H(MF₃)⁺ isomers (M = N-Bi) were optimized at the second-order Møller-Plesset level of theory with inclusion of the inner electrons, MP2(full) [28], using the aug-cc-pVDZ (M = N, P) and aug-cc-pVDZ/LANL2DZ basis sets (M = As. Sb. Bi), and the obtained species were unambiguously characterized as energy minima by harmonic frequencies calculations. The total energies were subsequently refined by single-point calculations at the coupled cluster level of theory (full electrons), including the contribution from single and double substitutions and an estimate of connected triples, CCSD(T,full) [29], using the aug-cc-pVTZ and the aug-cc-pVTZ/LANL2DZ basis sets. The proton affinity (PA) and the gas-phase basicity (GB) of MF₃, i.e. the minus enthalpy $(-\Delta H)$ and the minus free energy $(-\Delta G)$ changes at T = 298.15 K and P = 1 atm of the reaction

$$H^+ + MF_3 \, \rightarrow \, H(MF_3)^+$$

were calculated by correcting the coupled cluster electronic energies so to include the zero-point vibrational energies (ZPE),

the vibrational contribution to the thermal correction (TC), and the total entropies S. These terms were obtained by standard statistical mechanics formulas [30] using the MP2(full)/aug-cc-pVDZ and MP2(full)/aug-cc-pVDZ/LANL2DZ unscaled frequencies and moments of inertia. The overall TC term was finally obtained by adding the translational (3/2 RT) and rotational (RT or 3/2 RT) contributions at 298.15 K. Our thermochemical data have been corrected for the basis set superposition error (BSSE) using the method by Boys and Bernardi [31]. The MP2(full)/aug-cc-pVDZ and MP2(full)/aug-cc-pVDZ/LANL2DZ atomic charges were calculated by Natural Bond Orbital (NBO) analysis [32] at 0 K of the wave function.

3. Results and discussion

The MP2 optimized geometries of the MF₃ molecules and of their M- and F-protonated isomers, henceforth indicated as **1a–1e** and **2a–2e**, respectively, are shown in Fig. 1. For comparative purposes, we included also the experimental gas-phase structures of MF₃ [8,33,34], and the crystal structure of H–PF₃⁺ (**1b**) [20]. The absolute and relative energies of our investigated species and their NBO total charges are listed in Tables 1 and 2. Their CCSD/aug-cc-pVDZ/LANL2DZ T1 diagnostics [35] resulted invariably around the recommended threshold of 0.02.

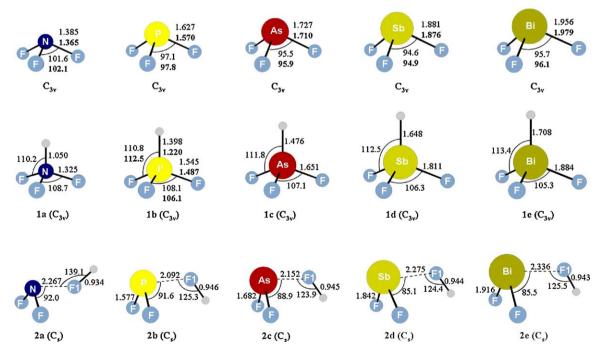


Fig. 1. MP2(full)/aug-cc-pVDZ and MP2(full)/aug-cc-pVDZ/LANL2DZ optimized geometries (Å and °) of MF₃, H-MF₃⁺, and HF-MF₂⁺ (M = N-Bi). Bold values are experimental data.

Table 1 Total energies (atomic units), zero-point energies (ZPE, atomic units), thermal corrections (TC, atomic units), total entropies (S, cal mol $^{-1}$ K $^{-1}$), and relative energies (kcal mol $^{-1}$) of MF $_3$, H $^-$ MF $_3^+$, HF $^-$ MF $_2^+$ (see Fig. 1), MF $_2^+$ and HF, calculated with the aug-cc-pVTZ (M = N, P) and aug-cc-pVTZ/LANL2DZ (M = As, Sb, Bi) basis sets.

sets.						
	CCSD(T,full) ^a	ZPE ^b	TC ^c	S ^d	ΔH	ΔG
					(298.15 K)	(298.15 K)
NF ₃	-353.77164	0.01006	0.00359	62.4		
1a	-353.99975	0.02525	0.00347	62.1	0.0	0.0
2a	-353.99980	0.01896	0.00577	75.0	-2.5	-6.4
PF_3	-640.34560	0.00814	0.00413	66.0		
1b	-640.60873	0.01981	0.00410	65.9	0.0	0.0
2b	-640.56778	0.01682	0.00577	76.4	24.9	21.7
AsF ₃	-305.43619	0.00680	0.00447	69.0		
1c	-305.66131	0.01696	0.00453	69.2	0.0	0.0
2c	-305.67987	0.01584	0.00596	78.5	-11.5	-14.2
SbF ₃	-304.74611	0.00595	0.00481	72.1		
1d	-304.95829	0.01451	0.00500	72.6	0.0	0.0
2d	-305.00726	0.01519	0.00619	81.0	-29.6	-32.1
BiF ₃	-304.77099	0.00541	0.00504	74.7		
1e	-304.93158	0.01301	0.00532	75.5	0.0	0.0
2e	-305.04735	0.01474	0.00642	84.1	-70.9	-73.5
NF_2^+	-253.61187	0.00774	0.00295	57.4		
PF ₂ ⁺	-540.16981	0.00535	0.00325	61.2		
AsF ₂ ⁺	-205.27931	0.00443	0.00339	64.0		
SbF ₂ ⁺	-204.60584	0.00388	0.00354	66.3		
BiF ₂ ⁺	-204.64598	0.00358	0.00363	68.4		
HF	-100.36358	0.00930	0.00236	41.5		
H ⁺			0.00143	26.0		

a At the MP2(full)/aug-cc-pVDZ (M = N, P) and MP2(full)/aug-cc-pVDZ/LANL2DZ (M = As. Sb. Bi) optimized geometries.

level of theory furnished values nearly identical to the MP2 (PF₃: 1.626 Å/96.8°; **1b**: 1.401 Å/1.545 Å/108.0°/110.9°; **2b**: 0.944 Å/ 2.099 Å/1.577 Å/125.8°/91.1°). We note also from Table 2 that, according with the qualitatively expected trend, the ionicity of the M–F bond, roughly measured by the charge separation between the M and F atoms, appreciably increases from NF₃ to BiF₃.

Similar to the neutral MF₃, all the H-MF₃⁺ isomers **1a-1e** are predicted to be covalent structures of C_{3v} symmetry. The M-H bond distances regularly increase in the series and are typical of covalent bonds [34]. The M-F bond distances increase also from 1.325 Å (1a) up to 1.884 Å (1e), and the F-M-F bond angles range between ca. 105° (1e) and ca. 109° (1a). Therefore, passing from MF₃ to H–MF₃⁺, we note two clearly appreciable structural effects, namely a shortening of the M-F bond distance by ca. 0.06-0.08 Å and a widening of the F-M-F bond angle by up to ca. 12° (M = Sb). In addition, the negative charge of the F atoms of any H-MF₃⁺ is lower than the corresponding MF₃ by ca. 0.1 e, and the positive charge of the (H-M)-moiety of H-MF₃⁺ is larger than the M atom of MF₃ by ca. 0.6 e. Overall, this suggests that the formal attachment of H⁺ to the M atom of MF₃ enhances back donation from the surrounding fluorines and reinforces the degree of the M-F interaction. Consistently, we found that, passing from MF₃ to H-MF₃⁺, the frequencies of the M-F stretching modes increase by ca. $60-80 \text{ cm}^{-1}$ (A₁ symmetry) and ca. $120-260 \text{ cm}^{-1}$ (E symmetry). We also note from Fig. 1 that the H-M-F bond angle of any isomer 1a-1e is larger than the corresponding F-M-F bond angle. Therefore, as noted previously for the H-PF₃⁺ isomer **1b** [20], in the view of the VSEPR model, the H atom of any H-MF₃⁺ appears a slightly larger ligand than the F atom.

The F-protonated isomers 2a-2e share typical structural motifs, namely a strongly elongated HF-MF₂⁺ bond, whose distance is

Table 2NBO atomic charges (e) of MF₃, H-MF₃⁺, HF-MF₂⁺ (see Fig. 1), MF₂⁺ and HF, calculated at the MP2(full)/aug-cc-pVTZ (M = N, P) and MP2(full)/aug-cc-pVTZ/LANL2DZ (M = As, Sb, Bi) level of theory (see Fig. 1).

,	, , , , , , , , , , , , , , , , , , , ,	3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3		
	q (M)	q (F)	q (F1)	q (H)
NF ₃	0.657	-0.219		
1a	0.742	-0.078		0.492
2a	0.885	0.036	-0.572	0.615
PF ₃	1.785	-0.595		
1b	2.428	-0.484		0.024
2b	1.956	-0.536	-0.522	0.638
AsF ₃	2.013	-0.671		
1c	2.718	-0.559		-0.041
2c	2.165	-0.625	-0.553	0.638
SbF ₃	2.220	-0.740		
1d	3.051	-0.632		-0.155
2d	2.360	-0.710	-0.579	0.639
BiF ₃	2.238	-0.746		
1e	2.891	-0.605		-0.076
2e	2.371	-0.712	-0.584	0.637
NF_2^+	0.890	0.055		
PF ₂ ⁺	2.008	-0.504		
AsF ₂ ⁺	2.190	-0.595		
SbF ₂ ⁺	2.378	-0.689		
BiF ₂ ⁺	2.384	-0.692		
HF	0.560	-0.560		

predicted between 2.092 Å (2b) and 2.336 Å (2e), a nearly unitary charge on the -MF₂⁺ moiety, and dissociation enthalpies into MF₂⁺ and HF which range from ca. 13 kcal mol⁻¹ (2a) to ca. 18-21 kcal mol^{-1} (**2b–2e**). Therefore, similar to the previously investigated HF-NF₂⁺ isomer **1a** [13-17], all the F-protonated isomers HF-MF₂⁺ (M = P-Bi) are best viewed as ion-dipole complexes between the MF₂⁺ cation and the HF molecule. With the only exception of the HF-PF₂⁺ isomer **2b**, which is less stable than H-PF₃⁺ by ca. 22 kcal mol⁻¹ (free energy difference), any HF-MF₂⁺ results more stable than the corresponding H-MF₃⁺. As detailed in Table 1, the computed ΔG are 6.3 kcal mol⁻¹ (M = N), 14.3 kcal mol^{-1} (M = As), $32.1 \text{ kcal mol}^{-1}$ (M = Sb), $73.5 \text{ kcal mol}^{-1}$ (M = Bi). We also note from Fig. 1 that isomer 2a has a conformation different from 2b to 2e. The isomer of 2a structurally analogue to 2b-2e was in fact characterized as a firstorder saddle point.

The stability and thermochemistry of BiF_3 and of ions $\mathbf{1e}$ and $\mathbf{2e}$ could be in principle affected by spin-orbit (SO) coupling. The singlet-triplet energy gap of these species resulted however larger than 3–4 eV, thus suggesting that the SO term should not appreciably affect their predicted properties. Interestingly, a recent investigation revealed that the SO term has not an appreciable influence on the structure and the spectroscopic properties of BiH_3 [36].

The PA and the GB of the MF_3 molecules, computed at both the M (formation of isomers 1a-1e) and the F site (formation of isomers 2a-2e), are listed in Table 3 together with the available experimental data [12].

The theoretical PAs of NF₃ at the N and the F atom differ by 3.4 kcal mol⁻¹ and result as 132.1 and 135.5 kcal mol⁻¹, respectively. Within the accuracy of our calculations (estimated as nearly 4 kcal mol⁻¹), both these values are compatible with the experimental PA of NF₃, 135.9 kcal mol⁻¹. Even though the experimental GB of NF₃, 128.7 kcal mol⁻¹, is quite close to the value predicted for the F-protonation, it is however also not inconsistent, within combined uncertainities, with the formation of the N-protonated isomer. Therefore, in line with all the previous studies [13–17], we confirm here that, under thermodynamically controlled conditions, the gas-phase protonation of NF₃ leads to a mixture of the nearly degenerate isomers **1a** and **1b**. The theoretical PA of PF₃ amounts to 156.5 kcal mol⁻¹ for P-protonation and 131.9 kcal mol⁻¹

^b Based on unscaled MP2(full)/aug-cc-pVDZ (M = N, P) and MP2(full)/aug-cc-pVDZ/LANL2DZ (M = As, Sb, Bi) harmonic frequencies.

^c At 298.15 K, based on unscaled MP2(full)/aug-cc-pVDZ (M = N, P) and MP2(full)/aug-cc-pVDZ/LANL2DZ (M = As, Sb, Bi) harmonic frequencies.

^d At 298.15 K, based on unscaled MP2(full)/aug-cc-pVDZ (M = N, P) and MP2(full)/aug-cc-pVDZ/LANL2DZ (M = As, Sb, Bi) harmonic frequencies and moments of inertia.

Table 3 Theoretical and experimental proton affinities (PA) and gas-phase basicities (GB) of MF_3 (M = N-Bi) (kcal mol^{-1}).

NE (N) 122.1b		, , ,	GB (exp.) ^a
NF ₃ (N) 132.1 ^b		124.3 ^b	
137.6 ^c			
131.8 ^d			
132.8 ^e			
141.8 ^f			
NF ₃ (F) 135.5 ^b	135.9	130.5 ^b	128.7
139.8 ^c			
138.2 ^d			
134.8e			
146.5 ^f			
139.6 ^g			
PF ₃ (P) 156.5 ^b	166.2	148.4 ^b	158.4
PF ₃ (F) 131.9 ^b		127.2 ^b	
AsF ₃ (As) 128.7 ^b		121.0 ^b	
AsF ₃ (F) 144.4 ^b	152.3	139.5 ^b	144.4
SbF ₃ (Sb) 122.4 ^b		114.8 ^b	
SbF ₃ (F) 155.3 ^b		150.2 ^b	
BiF ₃ (Bi) 91.9 ^b		84.4 ^b	
BiF ₃ (F) 164.9 ^b		159.9 ^b	

- ^a Experimental value from Ref. [12].
- b Present work.
- ^c At the HF/6-31G(d,p) level of theory (Ref. [13]).
- d At the G1 level of theory (Ref. [14]).
- e At the G2MS level of theory (Ref. [16]).
- f At the QCISD/6-311+G(2d,2p) level of theory (Ref. [17]).
- g At the G2+ level of theory (Ref. [15]).

F-protonation. Compared with the experimental value of 166.2 kcal mol⁻¹, we assign the experimentally observed H(PF₃)⁺ as the trifluorophosphonium ion 1b rather than the significantly less stable **2b**. In fact, a difference of more than 30 kcal mol⁻¹ between the experimental and the theoretical PA of PF3 would mark an unreasonable failing of the coupled cluster method in predicting thermochemical quantities. The H-PF₃⁺ cation is also the only species observed in the solid state [20] and in solution [21]. As for protonated AsF₃, the theoretical PA and GB at the F atom, 144.4 and 139.5 kcal mol⁻¹, respectively, are close to the experimental values of 152.3 and 144.4 kcal mol^{-1} , respectively. On the other hand, the predicted PA and GB at the As atom, 128.7 and 120.0 kcal mol⁻¹, respectively, are significantly lower than the experimental values. We therefore suggest that the protonated AsF₃ observed so far in the gas phase and assigned as the trifluoroarsonium ion H-AsF₃⁺ [22] is indeed the HF-AsF₂⁺ isomer **2c**, more stable than the As-protonated structure 1c by ca. 14 kcal mol⁻¹. This assignment easily explains the gas-phase reactions observed for $H(AsF_3)^+$ [22], including in particular the efficient displacement of HF by ligands L so to give the formation of AsF₂⁺-(L). These processes well accord in fact with a precursor ion-dipole complex HF-AsF₂⁺. The PA and GB of SbF₃ and BiF₃ have not yet been experimentally measured. Our calculations suggest that these protonated molecules should be viable species, and indicate the F atoms as the by far favoured protonation sites. In addition, based on the predicted PA of 155.3 and 164.9 kcal mol⁻¹, respectively, both protonated SbF3 and BiF3 should be exothermically produced by various protonating agents.

The basicities of the M-protonated MF $_3$ (M = N-Bi) increase in the order BiF $_3$ < SbF $_3$ < AsF $_3$ < NF $_3$ < PF $_3$. This trend is irregular with respect to the PAs of the group XV hydrides MH $_3$ (AsH $_3$ < PH $_3$ < NH $_3$), but resembles the order of basicity of other group XV compounds such as M(CH $_3$) $_3$ (As(CH $_3$) $_3$ < N(CH $_3$) $_3$ < P(CH $_3$) $_3$) and MPh $_3$ (SbPh $_3$ < AsPh $_3$ \approx NPh $_3$ < PPh $_3$) [12]. Such variations have been explained [22] in terms of different participation (maximum for the P atom) of surrounding electrons (p, σ or π) to bonding with d orbitals of the M atom in the H-MR $_3$ cation. The basicities of the F-protonated MF $_3$ show instead a nearly regular increase down group XV, i.e. PF $_3$ \approx NF $_3$ < AsF $_3$

< SbF $_3$ < BiF $_3$. Due to the ion-dipole character of isomers **2a-2e**, based on a simple thermochemical cycle, the PA of MF $_3$ at the F atom, PA $_F$ (MF $_3$), can be written as follows:

$$PA_F(MF_3) = -FA(MF_2^+) + BDE(HF-MF_2^+) + 371.3$$
 (1)

where FA(MF₂⁺) is the fluoride ion affinity of MF₂⁺, i.e. the minus enthalpy change of the reaction $MF_2^+ + F^- \rightarrow MF_3$, $BDE(HF-MF_2^+)$ is the dissociation enthalpy of HF-MF2+ into MF2+ and HF, and 371.3 is the deprotonation enthalpy of HF [37] (all quantities are expressed in kcal mol⁻¹). From the data reported in Table 1, the BDE of the various HF-MF₂⁺ (BSSE-corrected values) cover a range of less than 8 kcal mol^{-1} and amount to 13.1 kcal mol^{-1} (M = N). $18.0 \text{ kcal mol}^{-1} \text{ (M = P)}, 18.9 \text{ kcal mol}^{-1} \text{ (M = As)}, 20.2 \text{ kcal mol}^{-1}$ (M = Sb), and 20.6 kcal mol⁻¹ (M = Bi). Therefore, the sizable periodic increase from $131.9 \text{ kcal mol}^{-1}$ (M = P) to 164.9 kcal mol^{-1} (M = Bi) of the PA_F(MF₃) essentially reflects a comparable decrease of the defluoruration enthalpies of the MF₃ molecules. Using Eq. (1), the $FA(MF_2^+)$ are predicted as 248.9 kcal mol⁻¹ (M = N), 257.4 kcal mol⁻¹ (M = P), 245.8 kcal mol⁻¹ (M = As), 236.2 kcal mol^{-1} (M = Sb), and 227.0 kcal mol^{-1} (M = Bi). For NF2+ and PF2+, these estimates favourably compare with the experimental values of 250.5 and 256.8 kcal mol-1, respectively [37]. This suggests that our calculated FA of AsF₂⁺, SbF₂⁺, and BiF₂⁺ should be reasonably accurate estimates of the still experimentally unknown values. Finally, we note that, at least for PF₂⁺ and AsF₂⁺, their order of FA is opposite to the experimentally established order of the FA of PF₃ and AsF₃ (with formation of PF₄⁻ and AsF₄⁻, respectively [38]).

4. Concluding remarks

The group XV fluorides MF_3 (M = N-Bi) can in principle behave as bifunctional Brønsted bases. Previous experimental and theoretical studies [13-17] indicated that the F atom of NF₃ is more basic than the N atom by ca. 2–6 kcal mol⁻¹. The present calculations revealed that the F atom is also the more basic site of AsF₃, SbF₃, and BiF₃. The free energy difference between the HF- MF_2^+ and $H-MF_3^+$ isomers ranges from 14.3 kcal mol^{-1} (M = As) up to $73.5 \text{ kcal mol}^{-1}$ (M = Bi). The experimental PA of AsF₃ is also quite close to the computed basicity of its F atom. We therefore suggest that the H(AsF₃)⁺ ion observed so far in the gas phase [22] and assigned as H-AsF₃⁺ is indeed the ion-dipole complex HF-AsF₂⁺. This explains the efficient displacement of HF so to give AsF₂⁺–(L) that these ions undergo by reacting with various ligands L [22]. The still elusive H(SbF₃)⁺ and H(BiF₃)⁺ should be also viable species in the gas phase, exothermically obtainable by various protonating agents. As for protonated PF₃, the calculations revealed that the gaseous trifluorophosphonium ion H-PF3+ is more stable than HF-PF₂⁺ by more than 20 kcal mol⁻¹. This is consistent with the recent isolation of H-PF₃⁺ in the solid state [20] and with its previous observation in solution [21].

Acknowledgments

The authors thank the Italian Ministero dell' Università e della Ricerca (MiUR) and the Università della Tuscia for financial support through the "Cofinanziamento di Programmi di Ricerca di Rilevante Interesse Nazionale".

References

- [1] F. Ishii, Y. Kita, in: T. Nakajima, B. Žemva, A. Tressaud (Eds.), Advanced Inorganic Fluorides, Elsevier, Amsterdam, 2000, , pp. 661–682, Chapter 20.
- [2] E.J. Caine, E.J. Charlson, J. Electron. Mater. 13 (1984) 341–372.
- [3] L.D. Freedman, G.O. Doak, G.G. Long, T. Mahmood, C.B. Lindhal, Kirk-Othmer Encycl. Chem. Technol. 3 (2004) 56–87.

- [4] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed., Wiley, Chichester, 1999, Chs. 9 and 10.
- [5] T.M. Klapötke, J. Fluorine Chem. 127 (2006) 679-687.
- [6] J.K.-C. Lau, W.-K. Li, J. Mol. Struct. (Theochem.) 578 (2002) 221–228.
- [7] W. Xu, G. Li, G. Yu, Y. Zhao, Q. Li, Y. Xie, H.F. Schaefer III, J. Phys. Chem. A 107 (2003)
- [8] J. Molnár, M. Kolonits, M. Hargittai, J. Mol. Struct. 413-414 (1997) 441-446.
- [9] R.J. Gillespie, G.P. Pez, Inorg. Chem. 8 (1969) 1233–1235.
- [10] J.L. Beauchamp, D. Holtz, W.G. Henderson, R.W. Taft, Inorg. Chem. 10 (1971) 201-203.
- [11] T.B. McMahon, P. Kebarle, J. Am. Chem. Soc. 107 (1985) 2612-2617.
- [12] E.P.L. Hunter, S.G. Lias, J. Phys. Chem. Ref. Data 27 (1998) 413–656.
- [13] J.J. Fisher, T.B. McMahon, J. Am. Chem. Soc. 110 (1988) 7599-7604.
- [14] F. Grandinetti, J. Hrušàk, D. Schröder, S. Karrass, H. Schwarz, J. Am. Chem. Soc. 114 (1992) 2806-2810.
- K. Hiraoka, M. Nasu, S. Fujimaki, S. Yamabe, J. Phys. Chem. 99 (1995) 15822-
- [16] F. Grandinetti, P. Cecchi, V. Vinciguerra, Chem. Phys. Lett. 281 (1997) 431-437.
- K. Pei, J. Liang, H. Li, J. Mol. Struct. 690 (2004) 159–163.
- [18] R.R. Corderman, J.L. Beauchamp, Inorg. Chem. 17 (1978) 1585-1588.
- [19] S.M. Collyer, T.B. McMahon, J. Phys. Chem. 87 (1983) 909-911.
- [20] R. Küster, T. Drews, K. Seppelt, Inorg. Chem. 39 (2000) 2784-2786.
- [21] L.J. Vande Griend, J.G. Verkade, J. Am. Chem. Soc. 97 (1975) 5958–5960. [22] C.E. Doiron, T.B. McMahon, Inorg. Chem. 19 (1980) 3037–3042.
- [23] R. Küster, K. Seppelt, Z. Anorg. Allg. Chem. 626 (2000) 236–240. [24] M. Tramšek, B. Žemva, J. Fluorine Chem. 127 (2006) 1275–1284.
- [25] M.J. Frish, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzevski, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam. S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.

- Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Hishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratman, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
- [26] R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96 (1992) 6796–6806.
- [27] W.R. Wadt, P.J. Hay, J. Chem. Phys. 82 (1985) 284-298.
- [28] C. Møller, M.S. Plesset, Phys. Rev. 46 (1934) 618-622.
- [29] K. Raghavachari, G.W. Trucks, J.A. Pople, M. Head-Gordon, Chem. Phys. Lett. 157 (1989) 479-483.
- [30] D.A. Mc Quarry, Statistical Mechanics, Harper & Row, New York, 1976.
- [31] S. Boys, F. Bernardi, Mol. Phys. 19 (1970) 553.
- E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO, Version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison.
- [33] L. Margulès, J. Demaison, J.E. Boggs, J. Mol. Struct. (Theochem.) 500 (2000) 245-258.
- [34] R.D. Lide (Ed.), CRC Handbook of Chemistry and Physics, 73rd ed., CRC Press, Boca Raton, FL, 1992.
- T.J. Lee, P.R. Taylor, Int. J. Quant. Chem. Quant. Chem. Symp. 23 (1989) 199.
- [36] F. Wang, J. Gauss, J. Chem. Phys. 129 (2008) 174110.
 [37] NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005 Release, http://webbook.nist.gov.
- J.W. Larson, T.B. McMahon, J. Am. Chem. Soc. 107 (1985) 766-773.